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Abstract-This paper contains a semi-theo~ti~al analysis of asymmetric heat transfer in fully develop- 
ed two dimensional turbulent flow between parallel walls. 

An extension of the analogy between the transfer of heat and the transfer of momentum (due to 
Mizushina), is used to determine the heat transfer coefficients for the respective boundaries. The 
results of the analysis are presented in the form of working formulae from which the relative magni- 
tudes of the heat transfer coefficients may be determined. The formulae may be applied to practical 
engineering problems, but care is necessary because the assumptions made in the theory impose 
restrictions on the Prandtl and Reynolds number ranges for which the predictions are,acceptable. 

It is immediately obvious from the graphical presentation of the results for a particular fluid, that 
the heat flux ratio is an important additional parameter, and that cognizance of this should be taken in 
cases of non-uniform heating. 

By its nature, the present analysis is preliminary, and an experimental programme has been devised 
to study the general problem of asymmetric heat transfer and to test the theory. 

While channel flow has been considered, the results are thought to be valid for axisymmetric ff ow in 
annuli with small outside diameter/inside diameter ratios. 

R&n&--Cet article donne une analyse semi-theorique de la transmission de chaleur dans un &oule- 
ment turbulent bidimensionnel dissymetrique, pleinement Ctabli, entre deux mum paralleles. 

Une extension de l’analogie entre transfert de chaleur et transfert de quantite de mouvement (due & 
Mizushina) est utilisee pour determiner les coefficients de transmission de chaleur pour les deux 
parois. Les resultats de l’analyse sont present& sous la forme d’une formule pratique & partir de 
laquelle on peut determiner les valeurs relatives des coefficients de transmission de chaleur. La formule 
peut &tre appliquee & des problemes techniques reels, mais il faut prendre garde au fait que les hypo- 
theses faites dans la theorie imposent des restrictions dans les domaines de nombres de Reynolds et de 
Prandtl pour lesquels les resultats sont acceptables. 

I1 apparait immediatement sur la presentation graphique des resultats pour un fluide particulier. 
que le rapport des flux de chaleur est un parametre supplimentaire important, qu’il faudra connaitre 
dans les cas de chauffage non-uniforme. 

Par sa nature, l’etude actuelle est pr~limina~e, un programme experimental a Cti itabli pour ttudier 
le probleme g&&al d’une ~ans~ssion de chaleur assymetrique et verifier la thiorie. 

Bien que l’ecoulement dans un conduit ait it6 consider6 ici, on pense que les resultats sont tgalement 
valables pour un ecoulement a symetrie axiale dam des anneaux, dont les rapports diametre extirieut 

sur diametre interieur sont petits. 

Zosarmnenfassung-Die Arbeit enthiilt eine halbtheoretische Untersuchung tiber den unsymmetrischen 
Warmetibergang in vollentwickelter zweidimensionaler turbulenter Strtimung zwischen parallelen 
Wlnden. 

Eine Erweiterung der Analogie zwischen Warme- und Impulsiibertragung (nach Mizushina) 
dient zur Ermittlung der Warmetibergangskoeffizienten an den beiden Wlnden, die in Form einer 
Gebrauchsgleichung fiir den relativen Wert des Koethzienten mitgeteilt werden. Bei der Anwendung ist 
der begrenzte Bereich der Prandtl- und Reynoldszahl zu beachten. 

AUS der graph&hen Darstellung der Ergebnisse ergibt sich, dass das Verhlitnis der W&nestrom- 
dichten bei ungleichfijrmiger Beheizung von besonderer Bedeutung ist. Zur Prtlftmg dieser vorlauftgefl 
Theorie wird ein Versuchsprogramm angegeben. Die Theorie ist such auf Ringkan%e mit kleinen 

D~chmes~~erh~ltnis~n anwendbar. 
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~OTS~~~-~a CTaTbR CO~Op~~T ~O~~eOpeT~~e~K~~ aHaJIH3 a~~~~eTp~~Or0 TellJlO- 

o6nreHaB lIOJIBOCTbI0 pa3BElTOM ~yX~epH0~ Typ6y~eHTHOM IIOTOKO MelfQy ~apa~~e~bH~~ 
CTeHKa~~.~~~O~pe~e~eH~KKO3~~tl~~eHTOBTe~~OO6~eH~trC~O~b3y~TC~(BCOOTBeTCTBTyf0- 

uwx rpaHmuax) aHajiormi meHEy Tennoneper5oeom H nepeuocoM fFoJIn9ecTBa WuXemrsr 
(no Mri3ynniHa). 

PesynbTaTbr aaajIn3a npencTamellar B srnge pac4&mx Gopnryn, wa 0cHoBamm KOTOP~IX 

MOH(H0 OIIpeHenElTb OTHOCIlTeJIbWble BeJIWIElHbI K03@$HqHeHTOB TeIInOO6MeHa. @OpMyEd 

MOWHO IIpMMeHMTb H H IlpaKTMYeCHllM HlDKeHepHldM 3aAaqaM, HO IIplI 3TOM HeO6XOAnMa 

ocTopowKocTb,~.~.c~enambIe B TeopHElIIpeAnoJIo~eHEIRHaJIaramT orpammems HafiHana- 

301ibImcem IJpaKgTmM PellHonbnca,mm ~oTopnxaT~~ony~e~~~np~e~ne~n. 

113 rpa@IYeCKOI'O TIpe@Ti7lBJIeHElR pe3yJIbTaTOB AJIII OQHOt HWAHOCTE1 Cpa3y Se CTaHO- 

RlClTCFl0'4eBLI~HbIM,~lTOCOOTHOlI.IeHYICTenJlOBbIXIIOTOKOB RBJl~eTC~BaHCHbIMAOnO.?lIWeJIbHbll 

napaMeTpoM 18 'iTo 3Hame aTor #amopa ~yw10 yw4TbmaTb B myYaRx HepamoMepxoro 

Harpesa. 

HacTo~~~~ aHam no cBoe& npHpoAe FmmeTCR npe~Bap~Te~~HblM. HaFneqezia npo- 

I’paMMa 3KC~ep~MeHTa~bH~ pa6OT fi;IfI ~3~eH~~O6~~X IIpO6ZIeM aC~MMeTp~~~HOr0 TeIIJIO- 

nepeHoca m ~poBep~~Teop~~. 

PaceMaTpusancs n0~0K IIO rcatiajry. ~pe~~o~araeTc~, YTO 3~81 pe3yJIbTaTbI OKaliFyTCR 

CIIpaBeJ&lI?BbIMH MJ@IROCeCMMeTpEiUliO~O IIOTOKaB Kp~JfbIXKaHaJIaXCMa;I~MlIBeJIH~EIHaMIl 

OTHOIIIeHHFIMe%QQ'H3py?KHbIM I4 BHyTpeHHHM ~EIaMeTpaMII. 

NOMENCLATURE 

d, = 2s = equivalent diameter ; 

C = specific heat at constant pres- 
sure ; 

h = convection heat transfer co- 
efficient ; 

E = eddy ~usivity of heat; 
a = K/cp = thermal ~~ivity ; 
K = thermal conductivity; 
P = fluid density; 
S = distance between walls; 
4 = specific heat flux; 
% 6, 4 = local velocity, average velo- 

city, friction velocity; 
Y = wall distance ; 

I” = viscosity; 

; 
= shear stress ; 
= temperature ; 

Uf = u/u, = friction velocity parameter ; 
y+ = yu?p/p = friction distance parameter; 
x = distance in flow direction; 

= a number; 
&I? = depii/p = Reynolds number; 
Pr = c/L/K = Prandtl number; 
Nu = hd,/K = Nusselt number. 

Sufixes 

1” 
= wall; 
= outside boundary of sublayer; 

b = bulk or mixed mean. 

INTRODUCTION 
THERE are a number of practical applications in 

which the thermal flux is non-uniform across the 
flow section. Fig. l(a) shows two such arrange- 
ments which are of immediate interest. For 
example, thermal insulation may be provided 
by means of a single coolant flowing in forced 
convection in ventilation spaces formed by 
parallel walls or concentric shells adjacent to the 
heated element [I ]. A ventilated space in con- 
junction with conventional insulating materials 
is an alternative scheme for reducing heat loss to 
the surroundings [2]. These arrangements do 
not necessarily reduce the heat loss from the 
heated element compared with conventional 
insulation, but that fraction of the heat which is 
lost to the coolant is both channelled and con- 
trolled. Another practical case involving asym- 
metric heat flow which might be envisaged is 
when various coolants are employed in separate 
flow channels. The coolants employed would 
depend, amongst other things, on problems of 
heat removal and heat insulation, and in such a 
scheme, a sandwiched fluid could provide an 
additional mechanical shield between two other 
fluids. 

When a fluid (or fluids) which is transparent 
for thermal radiation is used, heat transfer due 
to radiation occurs between the hot and cold 
boundary walls. This depends on the temperature 
of the walls, the geometry of the flow passage, 
and the nature of the surfaces employed. 
In the following analysis thermal radiation is 
neglected, but its inclusion is simple should 
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FIG. 1. Asymmetric heat transfer. 

conditions make it significant. At sufficiently high 
coolant flow rates, free convection is swamped 
and this mechanism of heat transfer is also 
neglected. 

THEORY 

The system to be analysed is shown in Fig. 
l(b). The fluid is in well developed turbulent 
flow between two parallel walls distance s 
apart. At one wall, thermal flux qw is transferred 
to the fluid, while yqw is transferred from the 
fluid at the opposite boundary. A diagrammatic 
temperature distribution for the system is shown 
for the case of 1 > y > 0 ; the shape of the 
profile is discussed in a later section. A heat 
balance indicates that qw(l -- 7) heat per unit 
surface area per unit time is channelled with the 
fluid. 

The determination of the two convection heat 
transfer coefficients requires a knowledge of the 
temperature ~s~bution in the y direction, and 
this in turn depends on the velocity distribution 
when an analogy between the transfer of heat 
and transfer of momentum is used. For charmel 
flow, Knudsen and Katz [3] suggest that the 
equation 

correlates the velocity distribution data in the 
turbulent region. 

BARROW 

For the laminar sublayers adjacent the walls, 
the equation 

u+ = >i 4 

may be used, and from these equations the 
extent of the laminar sublayer, which presents 
the greater resistance to heat flow, may be deter- 
mined by solving 

when, 

y: = 62 log,, y: + 3.6 

y:(= u:> = 9.74 

Fig. 2 shows the simplified form of the universal 
velocity profile for channel flow. No account is 
taken of the buffer or transition zone. 

r 

r 

9.74 

Y* 

FIG. 2. Velocity distribution. 

i 

The convection heat transfer coefficient f-1 
which is to be determined, is defined by the 
equation 

(For the other boundary, the appropriate heat 
flux yqw and appropriate temperature difference 
would be used in the definition.) 

For terminal conditions with heat fluxes qtc 
and yqw uniform lengthwise, and constant heat 
transfer coefficients, the temperature differences 
between the fluid and the walls are constant, and 
f~the~ore 
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is constant and inde~ndent of position in the 
channel. The temperature differences between 
the walls and the fluid are determined by calcu- 
lating the sublayer and turbulent core tempera- 
ture drops separately. 

Considering first the qw wall. 
In the sublayer, the transfers of heat and 

momentum are on a molecular scale, when 

(for unit width of channel, and assu~ng that 
the velocity in the core is constant across the 
flow section and equal to the mean velocity 6). 
With the assumption that the eddy conductivity 
(6 + a) is constant, and since aT/ax is indepen- 
dent of y, these equations may be solved for the 
temperature, T in the turbulent core. 

Yl and furthermore, with 
Ul 

Tw =cL- 
Yl 

and with 

u’ = 3 = 9.74 
% 

the temperature drop is 

1 a:2 

Tb=---.- 

$12 - Yl 
Tdy s WI 

The thermal resistance of the turbulent core is 

Tl- Tb 2 = ~-_ _~_ 
9w CP( f + a) (s - 2yJ2 

(T, - Tl) = %&If! 

Unlike fully developed pipe flow, the distri- 
butions of shear stress and heat flux in the 
turb~ent core are not similar functions of the 
wall distance, in which case, the Reynolds 
analogy between the transfer of heat and the 
transfer of momentum does not apply. For the 
temperature difference (T, - Tb), use can be 
made of Mizushina’s [4] extension of the 
analogy which is outlined in a previous paper 
[5] dealing with a channel with one wall adia- 
batic, which is a particular case of asymmetric 
heat transfer. When y = -1, the heating is 
symmetrical and the velocity and temperature 
profiles are similar in shape, so that the Reynolds 
analogy may be used giving the thermal resis- 
tance of the turbulent core 

When the laminar sublayer thickness y1 is small 
compared with the charnel width s, and since 
the Reynolds analogy is valid for E $ a then 
equations (2) and (3) combined give 

ii-uu,. s 
= .--__- a __ 

CTW * 6cpa 

Now considering the general case of asym- 
metric heating, with the same assumptions, the 
heat balance equations are 

and, 

(&I - YqV) = GCP $3 - 2Yd 

r 

aT 
--CP(E f cc) TfT - yqw = fiep 2; (s - y 

aY 
- Yl> 

Tl - Ttt a - u1 

qzL’ crw (2) 
Solving, the temperature for this case is given by 

%(SY - YW 

This may also be obtained from the heat balance 
T=T,--- 

cp(c + a) (s - 2YS - 
equations 

W,‘Y2/2 
ar 

--__ 
- cp(~. + a) - = dcp 

cp(c + a:1 (s - 2Y,) 
(4) 

aY Neglecting the terms in y1 in the numerators, 
and and with 



310 HENRY BARROW 

the thermal resistance of the turbulent core for with y the yqw wall distance. 
asymmetric heat transfer is The temperature T is given by 

or 

T=T,+ 
qw(1 - Y)Y2/2 

CP(E + a) (s - 2Yl) 
+ 

r4uJ -_-_ ___-- (7) 
cp(c + a) 

and the thermal resistance of the turbulent core 
referred to that wall becomes 

c5) Tb - Tl 
I__ = (2 + I/y) 

Yqw Hence the resistance of the turbulent core, 
referred to the qw wall for asymmetric heating, 
is approximately (2 + y) times that for sym- 
metrical heating. 

By adding equations (1) and (5), the total 
temperature difference between the qw wall and 
the fluid is 

T, _ Tb = 9*74 qwpr + hi2 + d @ - 5) 
CPU, 4P 

Now the Blasius equation 

or 

rw/$pti2 = 0.079 Re-l14 > 

u2 = 0.0395 Re-lf4 ii2 T 2 

suitably correlates the wall shear and the 
Reynolds number of the flow, and since 

Nu- RePrqw __~- by definition, 
cpW.to - Td 

O-1986 ReTi Pr 
N” = ?OT? + y) Rells + 9.74 [Pry-(2$] 

(6) 
At this point, it should be noted that with 

y = -1, i.e. for symmetrical heating, equation 
(6) becomes similar in form to the heat transfer 
equation for pipe flow. 

The convection heat transfer coefficient for 
the yqw wall may be determined in an identical 
manner with the heat balance equations 

and, 

CP(E + 4 g - ww = CCP fg(Y - Yl> 

where 

Nu = Re I+ yqW 
cpu(T, - T,) = 

O-1986 Re71s Pr -- -___--~ tar 5.03(2 + l/y) Re118 + 9.74 [Pr - (2 -i- l/y)] 

DISCUSSION 

The temperature distribution for asymmetric 
heat transfer in a two-dimensional channel, has 
been determined by considering each wall in 
turn. Equations (4) and (7) for the q%, wall and 
yqw respectively, are of the same form as they 
should be. A typical temperature profile is 
sketched in Fig. l(b) showing d2T/dy2 to be 
positive at all points in the turbulent core. This 
is partly the result of assuming constant eddy 
diffusivity E [and hence conductive (C i_ a)] in 
that region. (The eddy diffusivity 6 is a function 
of wall distance and Reynolds number.) In 
reality, for positive values of y, a point of contra- 
flexure is to be expected near the centre of the 
channel. For y = 1, the temperature T is linear 
in y in the core, and the whole thermal flux is 
transferred from one wall to the other, the fluid 
bulk temperature remaining constant. Under 
such conditions, the heat transfer coefficients are 
the same as indicated by equations (6) and (8) 
withy = +l. 

Fig. 3 shows the coefficients plotted in the 
usual way for a fluid with Pr = 0.7. 

The relative magnitudes are readily obtainable 
from the curves for a given degree of asym- 
metry of heat transfer. 

For y = - 1, equations (6) and (8) are iden- 
tical, and there is good agreement between them 
and the empirical equation 

Nu = O-023 Re0’8 Pr”.4, 
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FIG. 3. Heat transfer coefficients. 

which is obtained by dimensional analysis and is 
assumed to apply to charnel flow through the 
hydraulic radius concept. 

The use of this empirical equation as it stands, 
is not warranted for cases of asymmetrical heat 
transfer, since it does not allow for the additional 
parameter y. (A modified form would be 
iVu = f(r, Re, Pr) where the function f is deter- 
mined experimentally.) However, comparison 
of the results of the present analysis for the case 

of symmetrical heating {i.e. y = 1) with the 
equation NU = 0.023 Re”‘8 Prw4 is valid, and 
shows that the assumptions made regarding 
eddy diffusivity, etc., are warranted even over a 
considerable range of Re, and therefore in the 
general asymmetrical heating case these assump- 
tions should be acceptable also. 

The theory is valid for fluids having Pr greater 
than about 0.7. For very small values of Pp., the 
thermal diffusivity a becomes significant in 
the total conductivity term (C _t a). This limits the 
use of the present results, which are not valid in 
cases of heat removal apportions where the 
coolant fluid might have a small Pr number (e.g. 
liquid metals). 

An experimental programme has been devised 
to test the predictions presented in this paper. 
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