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Abstract—This paper contains a semi-theoretical analysis of asymmetric heat transfer in fully develop-
ed two dimensional turbulent flow between parallel walls.

An extension of the analogy between the transfer of heat and the transfer of momentum (due to
Mizushina), is used to determine the heat transfer coefficients for the respective boundaries. The
results of the analysis are presented in the form of working formulae from which the relative magni-
tudes of the heat transfer coefficients may be determined. The formulae may be applied to practical
engineering problems, but care is necessary because the assumptions made in the theory impose
restrictions on the Prandtl and Reynolds number ranges for which the predictions are acceptable.

It is immediately obvious from the graphical presentation of the results for a particular fluid, that
the heat flux ratio is an important additional parameter, and that cognizance of this should be taken in
cases of non-uniform heating.

By its nature, the present analysis is preliminary, and an experimental programme has been devised
to study the general problem of asymmetric heat transfer and to test the theory.

While channel flow has been considered, the results are thought to be valid for axisymmetric flow in

annuli with small outside diameter/inside diameter ratios.

Résumé—Cet article donne une analyse semi-théorique de la transmission de chaleur dans un écoule-
ment turbulent bidimensionnel dissymétrique, pleinement établi, entre deux murs paralieles.

Une extension de I'analogie entre transfert de chaleur et transfert de quantité de mouvement (due
Mizushina) est utilisée pour déterminer les coefficients de transmission de chaleur pour les deux
parois. Les résultats de P’analyse sont présentés sous la forme d’une formule pratique a partir de
laquelle on peut déterminer les valeurs relatives des coefficients de transmission de chaleur. La formule
peut étre appliquée 4 des problémes techniques réels, mais il faut prendre garde au fait que les hypo-
theses faites dans la théorie imposent des restrictions dans les domaines de nombres de Reynolds et de
Prandt! pour lesquels les résultats sont acceptables.

11 apparait immédiatement sur la présentation graphique des résultats pour un fluide particulier.
que le rapport des flux de chaleur est un paramétre supplémentaire important, qu’il faudra connaitre
dans les cas de chauffage non-uniforme.

Par sa nature, Pétude actuelle est préliminaire, un programme expérimental a &té établi pour étudier
le probléme général d’une transmission de chaleur assymétrique et vérifier la théorie.

Bien que 'écoulement dans un conduit ait été considéré ici, on pense que les résultats sont également
valables pour un écoulement A symétrie axiale dans des anneaux, dont les rapports diameétre extérieur

sur diameétre intérieur sont petits.

Zusammenfassung—Die Arbeit enthiilt eine halbtheoretische Untersuchung {iber den unsymmetrischen
Wirmeiibergang in vollentwickelter zweidimensionaler turbulenter Strémung zwischen paralielen
Wainden.

Eine Erweiterung der Analogie zwischen Wirme- und Impulsiibertragung (nach Mizushina)
dient zur Ermittlung der Wirmeiibergangskoeffizienten an den beiden Winden, die in Form einer
Gebrauchsgleichung fiir den relativen Wert des Koeffizienten mitgeteilt werden. Bei der Anwendung ist
der begrenzte Bereich der Prandtl- und Reynoldszahl zu beachten.

Aus der graphischen Darstellung der Ergebnisse ergibt sich, dass das Verhiltnis der Warmestrom-
dichten bei ungleichférmiger Beheizung von besonderer Bedeutung ist. Zur Pritfung dieser vorldufigen
Theorie wird ein Versuchsprogramm angegeben. Die Theorie ist auch auf Ringkanile mit kleinen

Durchmesserverhiltnissen anwendbar.
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AHHOTANMA—ITA CTATBA COAEDIKAT NOJYTeOpeTHHYECKMI aHATH3 ACHMMETPUYHOTO TEIO-
o0MeHa B NOJHOCTHIO PABBATOM JBYXMEDHOM TYpOYJIeHTHOM MOTOKE Memy Hapa/UIebHEIME
crepwamu. [l onpefenenud KosdUOUenToB TennooGMeHs HCMONLBYETCH (B COOTBETCTBTYIO-
RX TPaHMaX) aHAJOTHA MEMIY TENIONEPEeHOCOM M NePEeHOCOM KOJIKYeCTBA HRUMEHUA
{no Musymusa).

Pesynbrarh aHanmsa NMPECTABIEHH B BUAe PACUSTHHIX (OPMYN, HA OCHOBAHUE KOTOPHX
MOKHO OIIPeflelIATh OTHOCHTeNbHEE BeINYUHE Kosddunuentop TervtoobMena. @opMyssl
MOIKHO NPHUMEHMTL ¥ K NPAKTHYECKMM HIDKEHEePHHIM 3ajavaM, HO NP 5TOM HeoGXommma
OCTOPOKHOCTE, T.K, CleIAaEHHE B TeOPHU OPERNOJ0KEeHIA HANAralT orpaHnyeRus Ha Auana-
sonk unceld [IparaTasa u Peftnonnnca, [IA KOTOPHX aTH JOMYLIEHNA IPHEMIIEMHL.

Hs rpaguyeckoro nNpefcTABIEHUA Pe3YABTATOB A ONHOM IKWAKOCTH Cpasy sKe CTAHO-
BHTCHA OYEBUIHEIM, UTO COOTHOUIEHHE TEIJIOBEIX [IOTOKOB ABIAECTCSH BAMKHAM HONOIHMTENBHBIM
TapaMeTpoM M YTO BHIHME 3TOrO (AKTOPa HYMHO YUHTHBATE B CIHYyYafX HeDaBHOMEPHOTO
Harpesa.

Hacrosmmit amanus no cBoefl mpupolle ABiifeTcA npepsapurennpmM. Hamedewa mpo-
IPaMMa SHCUEPEMeHTATLHHX paloT AiA ma3ydwenus o0muX npobieM aCHMMETPHYHOIO TEILIO-
NEePEeHoCca U NPOBEPKH TEODHH.

Paccmarpupancs moTox mo Kadanay. Ilpeamomaraercs, 4TO 9TH PESYJNbTATH OKAKYTCA
CHPABEATINBBIME M JJIA 0CECHMETPHYHOIO MOTOKA B KPYTVIBIX KaHAJAX ¢ MAJHMU BeNNUMHAMH

OTHOHIEHMA MEMIY HAPYKHBIM J BHYTDEHHUM IHaMETpaMu.
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NOMENCLATURE
d, = 2s = equivalent diameter;
¢ = specific heat at constant pres-
sure;
h = convection heat transfer co-
efficient ;
= eddy diffusivity of heat;
== thermal diffusivity;
= thermal conductivity;
= fluid density;
= distance between walls;
= specific heat flux;
= local velocity, average velo-
city, friction velocity;
== wall distance;
== Viscosity;
= shear stress;
= temperature;
ut = ufu, = friction velocity parameter;
y* == yu,p/u = friction distance parameter;
x = distance in flow direction;
= a number;
Re = d,pii{p = Reynolds number;
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Pr = cu/K = Prandtl number;

Nu = hd,/K = Nusselt number.
Suffixes

w = wall;

1 = outside boundary of sublayer;

b == bulk or mixed mean.

INTRODUCTION
THERE are a number of practical applications in

which the thermal flux is non-uniform across the
flow section. Fig. 1(a) shows two such arrange-
ments which are of immediate interest. For
example, thermal insulation may be provided
by means of a single coolant flowing in forced
convection in ventilation spaces formed by
parallel walls or concentric shells adjacent to the
heated element [1]. A ventilated space in con-
junction with conventional insulating materials
is an alternative scheme for reducing heat loss to
the surroundings [2]. These arrangements do
not necessarily reduce the heat loss from the
heated element compared with conventional
insulation, but that fraction of the heat which is
lost to the coolant is both channelled and con-
trolled. Another practical case involving asym-
metric heat flow which might be envisaged is
when various coolants are employed in separate
flow channels. The coolants employed would
depend, amongst other things, on problems of
heat removal and heat insulation, and in such a
scheme, a sandwiched fluid could provide an

-additional mechanical shield between two other

fluids.

When a fluid (or fluids) which is transparent
for thermal radiation is used, heat transfer due
to radiation occurs between the hot and cold
boundary walls. This depends on the temperature
of the walls, the geometry of the flow passage,
and the nature of the surfaces employed.
In the following analysis thermal radiation is
neglected, but its inclusion is simple should
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Fic. 1. Asymmetric heat transfer.

conditions make it significant. At sufficiently high
coolant flow rates, free convection is swamped
and this mechanism of heat transfer is also
neglected.

THEORY

The system to be analysed is shown in Fig.
1(b). The fluid is in well developed turbulent
flow between two parallel walls distance s
apart. At one wall, thermal flux ¢, is transferred
to the fluid, while yg, is transferred from the
fluid at the opposite boundary. A diagrammatic
temperature distribution for the system is shown
for the case of 1 > y > 0, the shape of the
profile is discussed in a later section. A heat
balance indicates that ¢,(l — y) heat per unit
surface area per unit time is channelled with the
fluid.

The determination of the two convection heat
transfer coefficients requires a knowledge of the
temperature distribution in the y direction, and
this in turn depends on the velocity distribution
when an analogy between the transfer of heat
and transfer of momentum is used. For channel
flow, Knudsen and Katz [3] suggest that the
equation

ut = 62 logyy y+ -+ 36

correlates the velocity distribution data in the
turbulent region.
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For the laminar sublayers adjacent the walls,
the equation

Ht = y+

may be used, and from these equations the
extent of the laminar sublayer, which presents
the greater resistance to heat flow, may be deter-
mined by solving
yi=062log,yf + 36
when,
yH(=uf) =974

Fig. 2 shows the simplified form of the universal
velocity profile for channel flow. No account is
taken of the buffer or transition zone.

ut
uT6-210g,, ¥+ 36

9T 4

y+
F1G. 2. Velocity distribution.

The convection heat transfer coefficient 4
which is to be determined, is defined by the
equation

9w

"TT-T

{For the other boundary, the appropriate heat
flux yg,, and appropriate temperature difference
would be used in the definition.)

For terminal conditions with heat fluxes g,
and yq,, uniform lengthwise, and constant heat
transfer coefficients, the temperature differences
between the fluid and the walls are constant, and
furthermore

dr / d7T, dT,
dx | dx ~ dx
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is constant and independent of position in the
channel. The temperature differences between
the walls and the fluid are determined by calcu-
lating the sublayer and turbulent core tempera-
ture drops separately.

Considering first the g, wall.

In the sublayer, the transfers of heat and
momentum are on a molecular scale, when

- K(Tw s Tl)
“ N
U
Tw = ;1‘
and with
b =1 =974
u

the temperature drop is

974 q, Pr
(To—T) =4

M

Unlike fully developed pipe flow, the distri-
butions of shear stress and heat flux in the
turbulent core are not similar functions of the
wall distance, in which case, the Reynolds
analogy between the transfer of heat and the
transfer of momentum does not apply. For the
temperature difference (7, — T;), use can be
made of Mizushina’s [4] extension of the
analogy which is outlined in a previous paper
[5] dealing with a channel with one wall adia-
batic, which is a particular case of asymmetric
heat transfer. When y = —1, the heating is
symmetrical and the velocity and temperature
profiles are similar in shape, so that the Reynolds
analogy may be used giving the thermal resis-
tance of the turbulent core

cp,

L-T, _iTn A}
9w CTyw

This may also be obtained from the heat balance
equations

or _ T /s
ch(e+a)@:uCp5i(§”y)
and

. dT /s
G = UCp 3N
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(for unit width of channel, and assuming that
the velocity in the core is constant across the
flow section and equal to the mean velocity #).
With the assumption that the eddy conductivity
(e + ) is constant, and since 07/éx is indepen-
dent of y, these equations may be solved for the
temperature, T in the turbulent core.

e [ VP o N
co(e+a)y12 2 2 "2

and furthermore, with

T:Tl—

1 3/2
T, =~ Td
b $/2 — y; j$’1 v

The thermal resistance of the turbulent core is
T—T, 2
qw  cple+a)(s — 20

s 5P
%5-§3+sﬁ-%ﬁ} &)

When the laminar sublayer thickness y, is small
compared with the channel width s, and since
the Reynolds analogy is valid for € > o then
equations (2) and (3) combined give

Tl — T by i — Uy A
G T ety 6epe
Now considering the general case of asym-

metric heating, with the same assumptions, the
heat balance equations are

. ar
(qw - Yqu-) = UCp ‘(Zx‘ (S — 2y1)

and,

er _ o or
—cpe + a)‘g}j — Y4y, = HCp “5}(3 —¥y—=n
Solving, the temperature for this case is given by
T qulsy — ¥3[2)
=T — 0
cple + a) (s — 2y))

- Yquwy 2/ 2
e ta G2y @

Neglecting the terms in y, in the numerators,

and with
T, —— rﬁm
o § - zyl %y y
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the thermal resistance of the turbulent core for
asymmetric heat transfer is

T, . @4
qw * bcp(e + @)

or

-1, . U—t
P 2+ P
Hence the resistance of the turbulent core,
referred to the g, wall for asymmetric heating,
is approximately (2 + ) times that for sym-
metrical heating.
By adding equations (1) and (5), the total
temperature difference between the ¢, wall and
the fluid is

®

974 q.,Pr
cpU,

qw(2 + '}’) (ﬁ — ul)

Tw_Tb: P
CUz p

Now the Blasius equation

Tu/bpit® = 0-079 Re~V4,
or

u? = 0-0395 Re~1/4 32,

suitably correlates the wall shear and the
Reynolds number of the flow, and since

o Re Prq,
- cpi(T,, — TI;
0-1986 Re?/8 Pr

by definition,

Nu = ~
"= 5032 1+ 7) RVP £ 9T [Pr — (2 + )]
(6)

At this point, it should be noted that with
y = —1, i.e. for symmetrical heating, equation

(6) becomes similar in form to the heat transfer
equation for pipe flow.

The convection heat transfer coefficient for
the yg,, wall may be determined in an identical
manner with the heat balance equations

_or
(9w — vquw) = dicp pl Sl 2Y)
and,

oT _er
cp(e + a) oy " Ydw =cp 556(}) )

HENRY BARROW

with y the yq,, wall distance.
The temperature T is given by

qu(1 — y)y?/2 Yqwy 7
cple +a) (s —2p)  cple +a)

and the thermal resistance of the turbulent core
referred to that wall becomes

I,— T, o
Y9w -
where

T=T,+

s . T — U
Q+H 1 g % @+ 1

o Re Prvq, _
Cpu(Tb - w)

o 0-1986 Re”/® Pr s
5030 1 ) RS+ 9TaPr— v iy &

DISCUSSION

The temperature distribution for asymmetric
heat transfer in a two-dimensional channel, has
been determined by considering each wall in
turn. Equations (4) and (7) for the ¢, wall and
yq,, respectively, are of the same form as they
should be. A typical temperature profile is
sketched in Fig. 1(b) showing d2T/dy?® to be
positive at all points in the turbulent core. This
is partly the result of assuming constant eddy
diffusivity ¢ [and hence conductive (e -+ o)} in
that region. (The eddy diffusivity ¢ is a function
of wall distance and Reynolds number.) In
reality, for positive values of y, a point of contra-
flexure is to be expected near the centre of the
channel. For y = 1, the temperature T is linear
in y in the core, and the whole thermal flux is
transferred from one wall to the other, the fluid
bulk temperature remaining constant. Under
such conditions, the heat transfer coefficients are
the same as indicated by equations (6) and (8)
with y = +1.

Fig. 3 shows the coefficients plotted in the
usual way for a fluid with Pr = 0-7,

The relative magnitudes are readily obtainable
from the curves for a given degree of asym-
metry of heat transfer.

For y = —1, equations (6) and (8) are iden-
tical, and there is good agreement between them
and the empirical equation

Nu = 0:023 Re"8 Pro4,
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FiG. 3. Heat transfer coefficients.

which is obtained by dimensional analysis and is
assumed to apply to channel flow through the
hydraulic radius concept.

The use of this empirical equation as it stands,
is not warranted for cases of asymmetrical heat
transfer, since it does not allow for the additional
parameter y. (A modified form would be
Nu = f(y, Re, Pr) where the function f is deter-
mined experimentally.) However, comparison
of the results of the present analysis for the case

3

of symmetrical heating (ie. y = 1) with the
equation Nu = 0:023 Re®8 Pr®¢ js valid, and
shows that the assumptions made regarding
eddy diffusivity, etc., are warranted even over a
considerable range of Re, and therefore in the
general asymmetrical heating case these assump-
tions should be acceptable also.

The theory is valid for fluids having Pr greater
than about 0-7, For very small values of Pr, the
thermal diffusivity « becomes significant in
thetotal conductivity term (e + «). This limits the
use of the present results, which are not valid in
cases of heat removal applications where the
coolant fluid might have a small Pr number (e.g.
liquid metals).

An experimental programme has been devised
to test the predictions presented in this paper.
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